Archive

Human-Robot-Interaction

Learning Assistance By Demonstration SystemIt’s been a while since my last post. Excuse: thesis write-up. Update: Thesis submitted!

In other news, our recent work on Learning Assistance by Demonstration was accepted this year’s IROS! It’ll be a fun and interesting conference in Tokyo, Japan! You can find a preprint here.

Abstract:  Crafting a proper assistance policy is a difficult endeavour but essential for the development of robotic assistants. Indeed, assistance is a complex issue that depends not only on the task-at-hand, but also on the state of the user, environment and competing objectives. As a way forward, this paper proposes learning the task of assistance through observation; an approach we term Learning Assistance by Demonstration (LAD). Our methodology is a subclass of Learning-by-Demonstration (LbD), yet directly addresses difficult issues associated with proper assistance such as when and how to appropriately assist. To learn assistive policies, we develop a probabilistic model that explicitly captures these elements and provide efficient, online, training methods. Experimental results on smart mobility assistance — using both simulation and a real-world smart wheelchair platform — demonstrate the effectiveness of our approach; the LAD model quickly learns when to assist  (achieving an AUC score of 0.95 after only one demonstration) and improves with additional examples. Results show that this translates into better task-performance; our LAD-enabled smart wheelchair improved participant driving performance (measured in lap seconds) by 20.6s (a speedup of 137%), after a single teacher demonstration.

Download Draft PDF

Just got news that our paper on the ARTY smart paediatric wheelchair was accepted to the IROS 2012 Workshop on Progress, Challenges and Future Perspectives in Navigation and Manipulation Assistance for Robotic Wheelchairs.

Abstract: Standard powered wheelchairs are still heavily dependent on the cognitive capabilities of users. Unfortunately, this excludes disabled users who lack the required problem-solving and spatial skills, particularly young children. For these children to be denied powered mobility is a crucial set-back; exploration is important for their cognitive, emotional and psychosocial development. In this paper, we present a safer paediatric wheelchair: the Assistive Robot Transport for Youngsters (ARTY). The fundamental goal of this research is to provide a key-enabling technology to young children who would otherwise be unable to navigate independently in their environment. In addition to the technical details of our smart wheelchair, we present user-trials with able-bodied individuals as well as one 5-year-old child with special needs. ARTY promises to provide young children with “early access” to the path towards mobility independence.

Download Preprint

More information about ARTY (with video).

Independent mobility is crucial for a growing child and its loss can severely impact cognitive, emotional and social development. Unfortunately, powered wheelchair provision for young children has been difficult due to safety concerns. But powered mobility need not be unsafe. Risks can be reduced through the use of robotic technology (e.g., obstacle avoidance) and we present a prototype safe smart paediatric wheelchair: the Assistive Robot Transport for Youngsters (ARTY). A core aspect of our work is that we aim to bring ARTY to the field and we discuss the challenges faced when trying to involve children in the development/testing of medical technology. We discuss one preliminary experiment designed as a “Hide-and-Seek” game as a short case study.

Note: This paper was submitted to the ACM/IEEE HRI-2011 Pioneers Workshop, Lausanne 2011.

Download

Follow

Get every new post delivered to your Inbox.